Deep Learning Prerequisites: Linear Regression in Python

Data science, machine learning, and artificial intelligence in Python for students and professionals

Generative AI
4.7/5
$29.99
$199.99
85% OFF!
  • All levels
  • 55 Lectures
  • 6h 26m
  • English
  • Lifetime access, certificate of completion (shareable on LinkedIn, Facebook, and Twitter), Q&A forum, subtitles in English
Login or signup to
register for this course

Course Description

This course teaches you about one popular technique used in machine learning, data science and statistics: linear regression. We cover the theory from the ground up: derivation of the solution, and applications to real-world problems. We show you how one might code their own linear regression module in Python.

Linear regression is the simplest machine learning model you can learn, yet there is so much depth that you'll be returning to it for years to come. That's why it's a great introductory course if you're interested in taking your first steps in the fields of:

  • deep learning
  • machine learning
  • data science
  • statistics


In the first section, I will show you how to use 1-D linear regression to prove that Moore's Law is true.

What's that you say? Moore's Law is not linear?

You are correct! I will show you how linear regression can still be applied.

In the next section, we will extend 1-D linear regression to any-dimensional linear regression - in other words, how to create a machine learning model that can learn from multiple inputs.

We will apply multi-dimensional linear regression to predicting a patient's systolic blood pressure given their age and weight.

Finally, we will discuss some practical machine learning issues that you want to be mindful of when you perform data analysis, such as generalization, overfitting, train-test splits, and so on.

This course does not require any external materials. Everything needed (Python, and some Python libraries) can be obtained for FREE.

If you are a programmer and you want to enhance your coding abilities by learning about data science, then this course is for you. If you have a technical or mathematical background, and you want to know how to apply your skills as a software engineer or "hacker", this course may be useful.

This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.



Suggested Prerequisites:

  • calculus
  • matrix arithmetic (adding, multiplying)
  • probability
  • Python coding: if/else, loops, lists, dicts, sets
  • Numpy coding: matrix and vector operations, loading a CSV file


Tips for success:

  • Use the video speed changer! Personally, I like to watch at 2x.
  • Take handwritten notes. This will drastically increase your ability to retain the information.
  • Write down the equations. If you don't, I guarantee it will just look like gibberish.
  • Ask lots of questions on the discussion board. The more the better!
  • Don't get discouraged if you can't solve every exercise right away. Sometimes it'll take hours, days, or maybe weeks!
  • Write code yourself, this is an applied course! Don't be a "couch potato".

Lectures

  • 9 sections
  • 55 lectures
  • 6h 26m total length
Introduction and Outline
Preview
07:42
How to Succeed in this Course
03:04
Statistics vs. Machine Learning
09:58
What is machine learning? How does linear regression play a role?
05:13
Define the model in 1-D, derive the solution (Updated Version)
12:44
Define the model in 1-D, derive the solution
14:53
Coding the 1-D solution in Python
07:38
Exercise: Theory vs. Code
01:20
Determine how good the model is: r-squared
05:51
R-squared in code
02:16
Introduction to Moore's Law Problem
02:31
Demonstrating Moore's Law in Code
08:01
Moore's Law Derivation
06:02
R-squared Quiz 1
01:49
Suggestion Box
03:10
Define the multi-dimensional problem and derive the solution (Updated Version)
09:35
Define the multi-dimensional problem and derive the solution
17:08
How to solve multiple linear regression using only matrices
01:56
Coding the multi-dimensional solution in Python
07:30
Polynomial regression - extending linear regression (with Python code)
07:57
Predicting Systolic Blood Pressure from Age and Weight
05:46
R-squared Quiz 2
02:06
What do all these letters mean?
06:23
Interpreting the Weights
04:01
Generalization error, train and test sets
02:50
Generalization and Overfitting Demonstration in Code
07:33
Categorical inputs
05:22
One-Hot Encoding Quiz
02:08
Probabilistic Interpretation of Squared Error
05:16
L2 Regularization - Theory
04:22
L2 Regularization - Code
04:14
The Dummy Variable Trap
03:59
Gradient Descent Tutorial
04:30
Gradient Descent for Linear Regression
02:14
Bypass the Dummy Variable Trap with Gradient Descent
04:18
L1 Regularization - Theory
03:06
L1 Regularization - Code
04:26
L1 vs L2 Regularization
03:06
Why Divide by Square Root of D?
06:32
Brief overview of advanced linear regression and machine learning topics
05:15
Exercises, practice, and how to get good at this
03:55
Data Science Interview Question - Residuals
04:50
Pre-Installation Check
04:13
Anaconda Environment Setup
20:21
How to install Numpy, Scipy, Matplotlib, Pandas, PyTorch, and TensorFlow
17:33
How to Code Yourself (part 1)
15:55
How to Code Yourself (part 2)
09:24
Proof that using Jupyter Notebook is the same as not using it
12:29
Python 2 vs Python 3
04:38
How to Succeed in this Course (Long Version)
10:25
Is this for Beginners or Experts? Academic or Practical? Fast or slow-paced?
22:05
What order should I take your courses in? (part 1)
11:19
What order should I take your courses in? (part 2)
16:07
What is the Appendix?
02:48
Where to get discount coupons and FREE deep learning material
05:49
Calculus Cheatsheet

Reviews

4.7

6,503 reviews for this course

5 Stars
(59%)
4 Stars
(35%)
3 Stars
(4%)
2 Stars
(1%)
1 Stars
(1%)

Testimonials and Success Stories

student-avatar

H. Z.

Machine Learning Research Scientist
flag-usa
United States

“I am one of your students. Yesterday, I presented my paper at ICCV 2019. You have a significant part in this, so I want to sincerely thank you for your in-depth guidance to the puzzle of deep learning. Please keep making awesome courses that teach us!”

5.0
student-avatar

Wade J.

Data Scientist
flag-usa
United States

“I just watched your short video on “Predicting Stock Prices with LSTMs: One Mistake Everyone Makes.” Giggled with delight.

You probably already know this, but some of us really and truly appreciate you. BTW, I spent a reasonable amount of time making a learning roadmap based on your courses and have started the journey.

Looking forward to your new stuff.”

5.0
student-avatar

Kris M.

Data Scientist
flag-usa
United States

“Thank you for doing this! I wish everyone who call’s themselves a Data Scientist would take the time to do this either as a refresher or learn the material. I have had to work with so many people in prior roles that wanted to jump right into machine learning on my teams and didn’t even understand the first thing about the basics you have in here!!

I am signing up so that I have the easy refresh when needed and the see what you consider important, as well as to support your great work, thank you.”

5.0
student-avatar

Steve M.

Machine Learning Research Scientist
flag-usa
United States

“I have been intending to send you an email expressing my gratitude for the work that you have done to create all of these data science courses in Machine Learning and Artificial Intelligence. I have been looking long and hard for courses that have mathematical rigor relative to the application of the ML & AI algorithms as opposed to just exhibit some 'canned routine' and then viola here is your neural network or logistical regression.

Your courses are just what I have been seeking. I am a retired mathematician, statistician and Supply Chain executive from a large Fortune 500 company in Ohio. I also taught mathematics, statistics and operations research courses at a couple of universities in Northern Ohio.

I have taken many courses and have enjoyed the journey, I am not going to be critical of any of the organizations from whom I have taken courses. However, when I read a review about one of your courses in which the student was complaining that one would need a PhD in Mathematics to understand it, I knew this was the course (or series of courses) that I wanted. (Having advanced degrees in mathematics, I knew that it was highly unlikely that a PhD would actually be required.)”

5.0
student-avatar

Saurabh W.

Data Scientist
flag-india
India

“Hi Sir I am a student from India. I've been wanting to write a note to thank you for the courses that you've made because they have changed my career. I wanted to work in the field of data science but I was not having proper guidance but then I stumbled upon your "Logistic Regression" course in March and since then, there's been no looking back. I learned ANNs, CNNs, RNNs, Tensorflow, NLP and whatnot by going through your lectures. The knowledge that I gained enabled me to get a job as a Business Technology Analyst at one of my dream firms even in the midst of this pandemic. For that, I shall always be grateful to you. Please keep making more courses with the level of detail that you do in low-level libraries like Theano.”

5.0
student-avatar

David P.

Financial Analyst
flag-usa
United States

“I just wanted to reach out and thank you for your most excellent course that I am nearing finishing.

And, I couldn't agree more with some of your "rants", and found myself nodding vigorously!

You are an excellent teacher, and a rare breed.

And, your courses are frankly, more digestible and teach a student far more than some of the top-tier courses from ivy leagues I have taken in the past.

(I plan to go through many more courses, one by one!)

I know you must be deluged with complaints in spite of the best content around That's just human nature.

Also, satisfied people rarely take the time to write, so I thought I will write in for a change. :)”

5.0
student-avatar

P. C.

Deep Learning Research Scientist
flag-china
China

“Hello, Lazy Programmer!

In the process of completing my Master’s at Hunan University, China, I am writing this feedback to you in order to express my deep gratitude for all the knowledge and skills I have obtained studying your courses and following your recommendations.

The first course of yours I took was on Convolutional Neural Networks (“Deep Learning p.5”, as far as I remember). Answering one of my questions on the Q&A board, you suggested I should start from the beginning – the Linear and Logistic Regression courses. Despite that I assumed I had already known many basic things at that time, I overcame my “pride” and decided to start my journey in Deep Learning from scratch.

Course by course, I was renewing the basics and the prerequisites. Thus, in several months, after every day studying under your guidance, I was able to gain enough intuitions and practical skills in order to begin progressing in my research. Having a solid background, it was just a pleasure to read all the relevant papers in the field as well as to make all the experiments needed for achieving my goal – creating a high-performance CNN for offline HCCR.

I believe, the professionalism of any teacher can be estimated by the feedback received from their students, and it’s of the utmost importance for me to thank you, Lazy Programmer!

I want you to know, in spite, that we have never actually met and you haven’t taught me privately, I consider you one of my greatest Teachers.

The most important things I have learned from you (some in the hard way, though) beside many exciting modern Deep Learning/AI techniques and algorithms are:

1) If one doesn’t know how to program something, one doesn’t understand it completely.

2) If one is not honest with oneself about one’s prior knowledge, one will never succeed in studying more advanced things.

3) Developing skills in BOTH Math and Programming is what makes one a good student of this major.

I am still studying your courses, and am certain I will ask you more than just a few technical questions regarding their content, but I already would like to say, that I will remember your contribution to my adventure in the Deep Learning field, and consider it as big as one of such great scientists’ as Andrew Ng, Geoffrey Hinton, and my supervisor.

Thank you, Lazy Programmer! 非常感谢您,Lazy 老师!

If you are interested, you can find my first paper’s preprint here:

https://arxiv.org/abs/xxx”

5.0
student-avatar

Dima K.

Data Scientist
flag-ukraine
Ukraine

“By the way, if you are interested to hear. I used the HMM classification, as it was in your course (95% of the script, I had little adjustments there), for the Customer-Care department in a big known fintech company. to predict who will call them, so they can call him before the rush hours, and improve the service. Instead of a poem, I Had a sequence of the last 24 hours' events that the customer had, like: "Loaded money", "Usage in the food service", "Entering the app", "Trying to change the password", etc... the label was called or didn't call. The outcome was great. They use it for their VIP customers. Our data science department and I got a lot of praise.”

5.0
student-avatar

Andres Lopez C.

Data Engineer
flag-usa
United States

“This course is exactly what I was looking for. The instructor does an impressive job making students understand they need to work hard in order to learned. The examples are clear, and the explanations of the theory is very interesting.”

5.0
student-avatar

Mohammed K.

Machine Learning Engineer
flag-germany
Germany

“Thank you, I think you have opened my eyes. I was using API to implement Deep learning algorithms and each time I felt I was messing out on some things. So thank you very much.”

5.0
student-avatar

Tom P.

Machine Learning Engineer
flag-usa
United States

“I have now taken a few classes from some well-known AI profs at Stanford (Andrew Ng, Christopher Manning, …) with an overall average mark in the mid-90s. Just so you know, you are as good as any of them. But I hope that you already know that.

I wish you a happy and safe holiday season. I am glad you chose to share your knowledge with the rest of us.”

5.0
Start learning today

Join 30 day bootcamp for free

4.7/5 from — 600k+ learners